The effects of geomorphic controls on sediment yield in the andean rivers of Colombia


  • Juan D. Restrepo Departamento de Geología, Universidad EAFIT, Carrera 49 Nº 7 sur 50-AA, 3300 Medellín, Colombia.
  • Sergio A. López Proyecto GEORED-INGEOMINAS, Diagonal 53 Nº 34-53, Bogotá D.C., Colombia.
  • Juan C. Restrepo Centro de Investigaciones Oceanográficas e Hidrográficas (CIOH), Armada Nacional, Cartagena, Colombia

Palabras clave:

Sediment yield, Runoff; Relief; Andes; Colombia


This paper examines sediment yield rates and its response to control variables in the principal rivers of Colombian draining into the Caribbean and Pacific coasts. Based on a multi-year dataset of sediment load from six rivers, including Mira, Patía, and San Juan on the Pacific margin, and Magdalena, Atrato, and Sinú, on the Caribbean basin, various morphometric, hydrologic, and climatic variables were estimated in order to understand and predict the variation in sediment yield. A multiple regression model, including two control variables, runoff and relief ratio (the ratio of the maximum height of the drainage basin and the basin length), explains 83% of the variance in sediment yield. This model is efficient (ME = 0.93) and is a valuable tool for predicting total sediment yield from Colombian rivers. These two selected estimators refer to the relative importance of the fluvial transport component in the sediment routing system. Thus, regional-scale variance of sediment yield in the Andean basins of Colombia seems to be explained by the combined influence of tectonics (relief) and surface runoff available for weathering and transport processes. In general, high sediment yielded rivers are high runoff systems with narrow alluvial plains (i.e. Pacific rivers), while low sediment yielded rivers like the Caribbean systems, contain large sections with not significant gradient in their longitudinal profiles. These sections coincide with large floodplains, which all provide sediment storage capacity within the catchments. When considering the three gauged Pacific rivers at their furthest downstream stations, the combined annual sediment load from these rivers into the Pacific Ocean is ~40 Mt yr–1. In contrast, the Magdalena, Atrato and Sinu rivers deliver ~173 Mt yr-1 into the Caribbean. Overall, Andean rivers of Colombia exhibit the highest sediment yields of all medium-large sized rivers of South America due to the interplay of (1) high rates of runoff (1,750-7,300 mm yr-1), (2) steep relief within catchments, (3) low values of discharge variability (Qmax-Qmin), and (4) episodic sediment delivery due to either geologic events or climatic anomalies.


Aalto, R., T. Dunne and J.J. Guyot, 2006. Geomorphic controls on Andean denudation rates. The Journal of Geology 114:85-99.

Ahnert, F., 1970. Functional relationships between denudation, relief, and uplift in large mid-latitude drainage basins. American Journal of Science 268:243-263.

Andrade, C.A., 1993. Análisis de la velocidad del viento sobre el Mar Caribe. Boletín Científico CIOH 13:33-44.

Andrade, C.A. and E.D. Barton, 2000. Eddy development and motion in the Caribbean Sea. Journal of Geophysical Research 105:26191-26201.

Dadson, S.J., N. Hovius, H.G. Chen, W.B. Dade, M.L. Hsieh, S.D. Willet, J.C. Hu, M.J. Horng, M.C. Chen, C.P. Stark, D. Lague and J.C. Lin, 2003. Links between erosion, runoff, variability and seismicity in the Taiwan orogen. Nature 426:648-651.

Dearing, J.A., 1992. Sediment yields and sources in a welsh upland lake-catchment during the past 800 years. Earth surface Processes and Landforms 17:1-22.

Douglas, I., 1967. Man, vegetation and the sediment yield of rivers. Nature 215:925-928.

Douglas, T., 1973. Rates of denudation in selected small catchments in Eastern Australia. University of Hull. Occasional Papers in Geography 21, 127 pp.

Dunne, T., 1979. Sediment yield and land use in tropical catchments. Journal of Hydrology 42:281-300.

Fournier, F., 1960. Climat et erosion: la relation l’erosion du sol par l’eau et ls precipitations atmospheriques. Presse Universitaire de France, Paris. 201 pp.

Gómez, J., A. Nivia, N.E. Montes, M.L. Tejada, D.M. Jiménez, M.J. Sepúlveda, J.A. Osorio, T. Gaona, H. Diederix, M. Mora and H. Uribe, 2008. Geological Map of Colombia. Scale 1:1’000.000. INGEOMINAS. Bogotá.

Harden, C.P., 2006. Human impacts on headwater fluvial systems in the northern and central Andes. Geomorphology 79:249- 263.

Harrison, C.G.A., 2000. What factor control mechanical erosion rates?. International Journal of Earth Sciences 88:752-763.

Hess, C.G., 1990. Moving up moving down: agro-pastoral landuse patterns in the Ecuadorian paramos. Mountain Research and Development 10:333-342.

HIDROSIG, 2001. Balances Hidrológicos de Colombia. Postgrado en Aprovechamiento de Recursos Hidráulicos, Universidad Nacional (Sede Medellín), software (version 1.8).

Hovius, N., 1998. Controls on sediment supply by large rivers. In: K.W. Shanley and P.J. McCabe (Eds.), Relative Role of Eustasy, Climate, and Tectonism in Continental Rocks. Society of Sedimentary Geology, Special Publication 59:3-16.

Hovius, N., C.P. Stark and P.A. Allen, 1997. Sediment flux from a mountain belt derived by landslide mapping. Geology 25:231- 234.

Hovius, N., C.P. Stark, M.A. Tutton and L.D. Abbott, 1998. Landslide-driven drainage network evolution in a pre-steady state mountain belt: Finisterre Mountains, Papua New Guinea.

Geology 26:1071-1074.

IDEAM, 2001. Estudio Ambiental de la Cuenca Magdalena-Cauca y Elementos para su Ordenamiento Territorial. Technical Report & Arcinfo Database, Instituto de Hidrología, Metereología y Estudios Ambientales (IDEAM), Bogotá, Colombia, 984 pp.

IDEAM, 2003 (Data). River Database of the pacific and Caribbean Rivers of Colombia. Instituto de Hidrología, Metereología y Estudios Ambientales (IDEAM), Bogotá, Colombia (6 gauging


Jansen, J.M.L. and R.B. Painter, 1974. Predicting sediment yield from climate and topography. Journal of Hydrology 21:371-380.

Kettner, A.J., J.D. Restrepo and J.P.M. Syvitski, (in press). Spatial Simulation of Fluvial Sediment Fluxes within an Andean Drainage Basin, the Magdalena River, Colombia. The Journal

of Geology.

Langbein, W.B. and S.A. Schumm, 1958. Yield of sediment in relation to mean annual precipitation. Am. Geophys. Union Trans. 39:1076-1084.

Latrubesse E.M., J.C. Stevauxs and R. Sinha, 2005. Tropical rivers. Geomorphology 70:187-206.

Ludwig, W. and J.J. Probst, 1998. River sediment discharge to the oceans: present controls and global budgets. American Journal of Science 298:265-295.

Marín, R., 1992. Estadísticas sobre el recurso agua en Colombia, 2ª ed. Ministerio de Agricultura, Instituto Colombiano de Hidrología, Metereología y Adecuación de Tierras, Bogotá.

Meade, R.H., 1988. Movement and storage of sediment in river systems. In A. Lerman and M. Meybeck (Eds.), Physical and Chemical Weathering in Geochemical Cycles. NATO ASI Series C in Mathematical and Physical Sciences 51:165-179.

Meybeck, M., 1976. Total mineral transport by world rivers. Hydrological Science Bulletin 21:265-284.

Meybeck, M., 1988. How to establish and use world budgets of riverine materials. In A. Lerman and M. Meybeck, M (Eds.), Physical and chemical weathering in geochemical cycles. NATO ASI Series C in Mathematical and Physical Sciences 51:247-272.

Milliman, J.D. and R.H. Meade, 1983. World-wide delivery of river sediment to the oceans. The Journal of Geology 91:1-21.

Milliman, J.D. and J.P.M. Syvitski, 1992. Geomorphic/tectonic control of sediment transport to the ocean: the importance of small mountainous rivers. The Journal of Geology 100:525-544.

Molina A., G. Govers, J. Poesen, H. Van Hemelryck, B. De Bievre and V. Vanacker, 2008. Environmental factors controlling spatial variation in sediment yield in a central Andean mountain area. Geomorphology 98:176-186.

Morehead, M.D., J.P.M. Syvitski, E.W.H. Hutton and S.D. Peckham, 2003. Modeling the temporal variability in the flux of sediment from ungauged river basins. Global and Planetary Change 39:95-110.

Mulder, T. and J.P.M. Syvitski, 1996. Climatic and morphologic relationships of rivers: Implications of sea-level fluctuations on river loads. The Journal of Geology 104:509-523.

Ohmori, H., 1983. Erosion Rates and Their Relation to Vegetation from the View-Point of World-Wide Distribution. Bulletin of the Department of Geography University of Tokyo 15:77-91.

Pickup, G., 1983. Sedimentation processes in the Purari River upstream of the delta. In T. Petr (Ed.), The Purari: tropical environment of a high rainfall basin. Dr. W. Junk Publishers: 205-226. Boston.

Pinet, P. and M. Souriau, 1988. Continental erosion and largescale relief. Tectonics 7:563-582.

Plazas, C., A.M. Falchetti, T, Van der Hammen y P.J. Botero, 1988. Cambios ambientales y desarrollo cultural en el Bajo Río San Jorge. Boletín Museo del Oro, Banco de la República 20:58-59.

Restrepo, J.D. (Editor), 2005. Los sedimentos del río Magdalena: Reflejo de la crisis ambiental. Eafit University Press, Medellín, 267 pp.

Restrepo, J.D., 2008. Applicability of LOICZ Catchment-Coast Continuum in a Major Caribbean Basin: The Magdalena Colombia. Estuarine, Coastal and Shelf Science 77:214-229.

Restrepo, J.D. and B. Kjerfve, 2000a. Water discharge and sediment load from the western slopes of the Colombian Andes with focus on Rio San Juan. The Journal of Geology 108:17-33.

Restrepo, J.D. and B. Kjerfve, 2000b. Magdalena River: interannual variability (1975-1995) and revised water discharge and sediment load estimates. Journal of Hydrology 235:137-149.

Restrepo, J.D. and S.A. López, 2008. Morphodynamics of the Pacific and Caribbean deltas of Colombia, South America. Journal of South American Earth Sciences 25:1-21.

Restrepo, J.D. and J.P.M. Syvitski, 2006. Assessing the Effect of Natural Controls and Land Use Chane on Sediment Yield in a Major Andean River: The Magdalena Drainage Basin, Colombia. Ambio: a Journal of the Human Environment 35:44- 53.

Restrepo, J.D., B. Kjerfve, I.D. Correa and J.L. González, 2002. Morphodynamics of a high discharge tropical delta, San Juan River, Pacific coast of Colombia. Marine Geology 192:355-

Restrepo, J.D., B. Kjerfve, M. Hermelin and J.C. Restrepo, 2006. Factors controlling sediment yield in a major South American drainage basin: the Magdalena River, Colombia. Journal of Hydrology 316:213-232.

Safran E., P. Bierman, R. Aalto, T. Dunne, K. Whipple and M. Caffee, 2005. Erosion rats driven by channel network incision in the Bolivian Andes. Earth Surface Processes and Landforms 30:1007-1024.

Schumm, S.A., 1954. The relation of drainage basin relief to sediment loss. Symposium on Continental Erosion, I.A.H.S., Publication 59:202-213. Rome.

Stallard, R.F., 1988. Weathering and erosion in the humid tropics. In A. Lerman and M. Meybeck (Eds.), Physical and Chemical Weathering in Geochemical Cycles, NATO ASI Series C in Mathematical and Physical Sciences 51:225-246.

Summerfield, M.A. and N.J. Hulton, 1994. Natural controls of fluvial denudation in major world drainage basins. Journal of Geophysical Research 99:13871-13884.

Syvitski, J.P.M., 2005. The morphodynamics of deltas and their distributary channels. In G. Parker and M.H. García (Eds.), River, Coastal Plain and Estuarine Morphodynamics: RCEM 2005. Taylor & Francis Group, London, Volume 1:143-150.

Syvitski, J.P.M. and J.D. Milliman, 2007. Geology, Geography, and Humans Battle for Dominance over the Delivery of Fluvial Sediment to the Coastal Ocean. The Journal of Geology 115:1-19.

Syvitski, J.P.M., S.D. Peckham, R.D. Hilberman and T. Mulder, 2003. Predicting the terrestrial flux of sediment to the global ocean: A planetary perspective. Sedimentary Geology 162:5- 24. Erratum for Sedimentary Geology 164:345.

Syvitski, J.P.M., A.J. Kettner, S.D. Peckham and S.J. Kao, 2005a. Predicting the flux of sediment to the coastal zone: application to the Lanyang watershed, Northern Taiwan. Journal of Coastal Research 21:580-587.

Syvitski, J.P.M., C.J. Vörösmartry, A.J. Kettner and P. Green, 2005b. Impact of Humans on the Flux of Terrestrial Sediment to the Global Ocean. Science 308:376-380.

Trimble, S.W., 1975. Denudation studies: can we assume steady state? Science 188:1207-1208.

Van der Hammen, T., 1986. Fluctuaciones Holocénicas del nivel de Inundaciones en la Cuenca del Bajo Magdalena-Cauca-San Jorge (Colombia). Geología Norandina 10:11-18.

Vanacker, V., M. Vanderschaeghe, G. Govers, E. Willems, J. Poesen, J. Deckers and B. De Biévre,

Linking hydrological, infinite slope stability and land use change models through GIS for assessing the impact of deforestation on landslide susceptibility in high Andean watersheds. Geomorphology 52:299-315.

Verstraeten, G. and J. Poesen, 2001. Factors controlling sediment yield from small intensively cultivated catchments in a temperate humid climate. Geomorphology 40:123-144.

Vörösmartry, C.J., M. Meybeck, B. Fekete, K. Sharma, P. Green and J.P.M. Syvitski, 2003.

Anthropogenic sediment retention: major global impact from registered river impoundments. Global and Planetary Change 39:169-190.

Walling, D.E., 1994. Measuring sediment yield from a river basin. In R. Lal (Ed.), Soil Erosion Research Methods. Soil and Water Conservation Society 11:39-80. Ankeny, Iowa.

Walling, D.E., 1997. The response of sediment yields to environmental change. Human impact on erosion and sedimentation. Proceedings of the Rabat Symposium S6, IAHS Publications 245:77-89.

Walling, D.E. and B.W. Webb, 1983. Patterns of sediment yield. In K.J. Gregory (Ed.), Background to Palaeohidrology. John Wiley 69-99. New York.

Wilson, L., 1973. Variations in mean annual sediment yield as a function of mean annual precipitation. American Journal of Science 273:335-349.

Wunder, S., 1996. Deforestation and the uses of wood in the Ecuadorian Andes. Mountain research and Development 16:367-382.




Cómo citar

Restrepo, J. D. ., López, S. A. ., & Restrepo, J. C. . (2021). The effects of geomorphic controls on sediment yield in the andean rivers of Colombia. Latin American Journal of Sedimentology and Basin Analysis, 16(2), 79-92. Recuperado a partir de



Volumen especial